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Abstract

This paper describes automatic tech-
niques for mapping 9611 entries in a
database of English verbs to Word-
Net senses. The verbs were initialy
grouped into 491 classes based on syn-
tactic categories. Mapping these verbs
into WordNet senses provides a re-
source that may be used for disam-
biguation in multilingual applications
such as machine translation and cross-
language information retrieval. Our
techniques make use of (1) a training
set of 1791 disambiguated entries, rep-
resenting 1442 verb entriesfrom 167 of
the categories; (2) word sense proba
bilities based on frequency countsin a
previously tagged corpus; (3) semantic
similarity of WordNet senses for verbs
within the same class; (4) probabilis-
tic correlations between WordNet data
and attributes of the verb classes. The
best results achieved 72% precision and
58% recall, versus a lower bound of
62% precision and 38% recall for as-
signing the most frequently occurring
WordNet sense, and an upper bound of
87% precision and 75% recall for hu-
man judgment.

1 Introduction

Our goal is to map entries in a lexical database
of 4076 English verbs automatically to Word-
Net senses (Miller and Fellbaum, 1991), (Fell-

baum, 1998) to support such applications as ma-
chine trandation and cross-language information
retrieval. For example, the verb drop is multi-
ply ambiguous, with many potential translations
in Spanish: bajar, caerse, dejar, caer, derribar,
disminuir, echar, hundir, soltar, etc. The lexical
database specifies a set of interpretations for the
verb drop, depending on its context in the source-
language (SL). Inclusion of WordNet sensesinthe
lexical database enablesthe selection of an appro-
priate verb in the target language (TL). Final se-
lection is based on a frequency count of Word-
Net senses across al semantic classes to which
theverb belongs—e.g., disminuir isselected when
the WordNet sense corresponds to the meaning of
drop in Prices dropped.

Our task differs from prototypical word sense
disambiguation (WSD) in several ways. First, the
words to be disambiguated are not tokens in a
text corpus, but entriesin alexical database. Sec-
ond, wetakean " all-words’ approachrather thana
“lexical-sample” approach (Kilgarriff and Rosen-
zweig, 2000): All words in the lexical database
“text” are disambiguated, not just a small humber
for which detailed knowledgeis available. Third,
we replace the contextual data typically used for
WSD with information about verb senses encoded
in terms of thematic grids and lexical-semantic
representations from (Olsen et al., 1997). Fourth,
whereas it is often assumed that only one word
sense is accurate for each token in a text cor-
pus, the absence of sentential context leads to a
situation where several WordNet senses may be
equally appropriate for a database entry. Indeed,
since distinctions between WordNet senses are of -



tenfine-grained Palmey2000),it canbeuncleay
evenin context, which of severalsensess in-
vokedor evenif only onesenseés invoked.
Theverbdatabaseontainamostlysyntactian-
formation aboutits entries, much of which ap-
pliesattheclasslevelwithin thedatabaseWord-
Net, on the otherhand,is a significantsourcefor
information about semanticrelationships,much
of which appliesat the “synset”level (“synsets”
are WordNet’s groupingsof synonymousword
senses)Mappingentriesin the databaséo their
correspondingWordNet sensesgreatly extends
thesemantigotentialof thedatabase.

2 Lexical Resources

We useanexistingclassificatiorof 4076 English
verbs, basedinitially on English Veerbs Classes
and Alternations (Levin, 1993) and extended
throughthe splitting of someclassesinto sub-
classesandthe additionof new classes.There-
sulting 491 classeqe.g., “Roll Verbs,Groupl”,
which includesdrift, drop, glide, roll, swing are
referredto hereasLevin+ classes As verbsmay
beassignedo multiple Levin+ classesthe actual
numberof entriesin thedatabasés larger, 9611.

Followingthemodelof (DorrandOlsen,1997),
eachlLevin+ classis associatedvith a thematic
grid (hencefortrabbreviated-grid), which sum-
marizesa verb’s syntacticbehaviorby specify-
ing its predicateargumentstructure. For exam-
ple,theLevin+ class‘Roll Verbs,Groupl” is as-
sociatedwith thef-grid [th  goal] , in whicha
themeanda goalareused(e.g.,Theball dropped
to the ground).! Eaché-grid specificationcorre-
sponddgo a Grid class Thereare48 Grid classes,
with aone-to-manyelationshipbetweerGridand
Levin+ classes.

WordNet,thelexical resourcego which we are
mappingentriesfrom thelexicaldatabasegroups
synonymousvordsensefto “synsets’andstruc-
turesthe synsetdnto part-of-speechierarchies.
Ourmappingoperatiorusesseverabtherdatael-
ementgertainingto WordNet: semantiaelation-
shipsbetweensynsetsfrequencydata,and syn-
tacticinformation.

Thereis also a Levin+ class“Roll Verbs, Group II”
which is associatedvith the g-grid [th particle(down)],in
which athemeanda particle‘down’ areused(e.g.,Theball
droppeddown).

Seven semanticrelationship types exist be-
tweensynsetsincluding,for example antonymy
hyperonymy and entailment. Synsetsare often
relatecto a half dozenor moreothersynsetsthey
mayberelatedo multiplesynsetshroughasingle
relationshipor may be relatedto a single synset
throughmultiple relationshiptypes.

Our frequencydatafor WordNetsensess de-
rivedfrom SEMCOR—a semanticoncordancen-
corporatingtagging of the Brown corpus with
WordNetsenses.

Syntactic patterns (“frames”) are associated
with eachsynsetge.g.,Somebody___ssomething;
Something ___s; Somebody ___s somebodyinto
V-ing something.Thereare 35 suchverbframes
in WordNetanda synsetmayhaveonly oneor as
manyasa half dozenor soframesassignedo it.

Our mappingof verbsin Levin+ classesto
WordNetsenseseliesin parton therelationbe-
tweenthematiaolesin Levin+andverbframesn
WordNet. Both reflecthow manyandwhatkinds
of agumentsa verb may take. However con-
structinga direct mappingbetweend-grids and
WordNet framesis not possible,since the un-
derlyingclassificationgiffer in significantways.
Thecorrelationsbetweerthe two setsof dataare
insteadviewedprobabilisticaly—asdescribedn
Section3.

Table1 illustratesthe relationbetweereachof
the resourcesabovefor the verb drop. In our
multilingualapplicationge.g. lexical selectiorin
machinetranslation),the Grid information pro-
videsa context-basetheanof associating verb
with a Levin+ classaccordingto its usagein the
SL sentenceTheWordNetsensepossibilitiesare
thuspareddownduringSL analysisput notsuffi-
cientlyfor thefinal selectiorof aTL verb. Forex-
ample,Levin+ class9.4 hasthreepossibleWord-
Netsensesor drop. HowevertheWordNetsense
8 is not associateavith any of the otherclasses;
thus,it is consideredo haveahigher‘information
content”thanthe others. The upshotis that the
lexical-selectiorroutine prefersdejar caer over
other translationssuch as derribar and bajar.®

2For further informationseethe WordNetmanuals sec-
tion 7, SEMCOR at http://wwwcogsci.princeton.edu.

3This lexical-selectiorapproactis an adaptatiorof the
notion of reductionin entropy, measureddy information
gain (Mitchell, 1997). Using information contentto quan-
tify the “value” of a classin the WordNet hierarchyhas



Levin+ Grid/Example WN Sense SpanishVerb(s)
9.4 [agth mod-locsrcgoal] | 1. move,displace 1. derribay echar
Directional | | droppedthestone 2. descendfall, godown 2. bajar caerse
Put 8. dropsetdown,putdown | 8. dejarcaer echaysoltar
45.6 [th] 1. move,displace 1. derribar echar
Calibratable| Pricesdropped 3. decline,godown,wane | 3. disminuir
Changeof
State
a7.7 [th srcgoal] 2. descendfall, godown 2. bajar caerse
Meander The river droppedfrom | 4. sink, drop,dropdown 4. hundir, caer
thelaketo thesea
51.3.1 [th goal] 2. descendfall, godown 2. bajar caerse
Roll | The ball droppedto the
ground
51.3.1 [th particle(down)] 2. descendfall, godown 2. bajar caerse
Roll II Theball droppeddown

Tablel: RelationBetween_evin+ andWN Sensesor ‘drop’

Theotherclassesiresimilarly associatewith ap-
propriateTL verbsduring lexical selection:dis-
minuir (class45.6),hundir (class47.7),andbajar
(class51.3.1)*

3 Training Data

We beganwith the lexical databasef (Dorr and
Jones;1996),which containsasignificanthumber
of WordNet-taggederb entries.Someof the as-
signmentaverein doubt,sinceclasssplitting had
occurredsubsequento thoseassignmentsyith
all old WordNetsensesarriedover to new sub-
classes.New classeshad alsobeenaddedsince
the manualtagging. It was determinedhat the
tagging for only 1791 entries—including1442
verbsin 167 classes—coulbeconsideredtable;
for theseentries,2756 assignment®f WordNet
senseshad beenmade. Datafor theseentries,
takenfrom both WordNet and the verb lexicon,
constitutethetrainingdatafor this study

The following probabilities were generated
from thetrainingdata:

also beenusedfor measuringsemanticsimilarity in a tax-
onomy(Resnik,1999b).More recently context-basedhod-
els of disambiguatiorhavebeenshownto represensignif-
icantimprovement®verthe baselingBangaloreandRam-
bow, 2000),(Ratnaparkhi2000).

“The full setof Spanishtranslationsis selectedfrom
WordNetassociationslevelopedn the EuroWordNeteffort
(Dorr etal.,1997).

e Grid probability, = M,

where each occurrenceof r, mvolve{s r}elatlng
synsets; throughrelationshiptype = to another
synsets,, andwheres; is mappedo by averbin

Grid classG; and s, is mappedto by a verbin

Grid classG;. This is the probabilitythatif one
synsetis relatedto anotherthrougha particular
relationshiptype, thena verb mappedo thefirst

synsetwill belongto thesameGrid classasaverb
mappedo the secondsynset. Computedvalues
generallyrangebetween3 and.35.

e Levin + probability, = {rs & Ir{+1}|_ L+2}|,
wherer, is asabove exceotthats, is mappedo

by averbin Levin+ classL+; ands, is mapped
to by a verbin Levin+ classL+;. This is the
probabilitythatif onesynseis relatedto another
through a particular relationship type, then a
verb mappedto the first synsetwill belongto

the samelLevin+ classas a verb mappedto the
secondsynset.Computedvaluesgenerallyrange
between25and.3.

¢ Tot frame probability, ; = M

whereéd; , is theoccurrencef the entired- -grid ¢
for verbentryv andcf; , is theoccurrenceof the
entireframe sequencg for a WordNetsenseo
which verb entry v is mapped.This is the prob-
ability thata verbin a Levin+ classis mappedo
a WordNetverb sensewith somespecificcombi-



nationof frames.Valuesaverageonly .11, butin
somecaseghe probabilityis 1.0.

¢ Indv frame probability, ; = W,

whered; , is the occurrenceof the single #-grid
component for verbentry» andcf; , istheoccur
renceof thesingleframe; for aWordNetsenseo
which verbentry» is mapped.Thisis the proba-
bility thata verbin a Levin+ classwith a partic-
ular 8-grid componentpossiblyamongothers)is
mappedo a WordNetverb senseassigned spe-
cific frame(possiblyamongothers).Valuesaver
age.20,butin somecasegheprobabilityis 1.0.

e Prior WN probability; = Hi—f", where
ts isanoccurrenc®f tags (for aparticularsynset)
in SEMCOR andt, is anoccurrencef anyof aset
of tagsfor verb » in SEMCOR, with s beingone
of thesensepossiblefor verbw. This probability
is the prior probability of specificWordNetverb
sensesValuesaveragell, butin somecaseghe
probabilityis 1.0.

In addition to the foregoing data elements,
basedon the training set, we also madeuse of
a semanticsimilarity measurewhich reflectsthe
confidencewith which averb, giventhe total set
of verbsassignedo its Levin+ class,is mapped
to a specificWordNetsense. This represent&n
implementationof a classdisambiguatioralgo-
rithm (Resnik,1999a) modifiedto runagainsthe
WordNetverbhierarchy?

We also made a powerful “same-synsetas-
sumption”: If (1) two verbsare assignedo the
samelevin+ class,(2) one of the verbsw»; has
beenmappedo a specificWordNetsenses;, and
(3) theotherverb v, hasaWordNetsenses, syn-
onymouswith sq, thenwy shouldbemappedo s;.
SinceWordNetgroupssynonymousvord senses
into “synsets,”s; and s, would correspondto
the samesynset.SincelLevin+ verbsaremapped
to WordNetsensewia their correspondingynset
identifiers, when the set of conditionsenumer
atedabovearemet,thetwo verbentrieswould be
mappedo thesameWordNetsynset.

5The assumptiorunderlyingthis measurés thatthe ap-
propriateword sensedor a group of semanticallyrelated
words should themselvede semanticallyrelated. Given
WordNets hierarchicaktructurethe semanticsimilarity be-
tweentwo WordNetsensegorrespondso the degreeof in-
formativenesof the most specificconceptthat subsumes
themboth.

As an example,the two verbstag and mark
havebeenassignedo the samelLevin+ class.In
WordNet, eachoccursin five synsets,only one
in which they both occur If tag hasa WordNet
synsetassignedo it for the Levin+ classit shares
with mark, andit is the synsetthatcoverssenses
of bothtag andmark, we cansafelyassumehat
that synsetis alsoappropriatefor mark, sincein
thatcontextthetwo verbsensearesynonymous.

4 Evaluation

Subsequenb the culling of thetrainingset,sev-
eral processesvere undertakenthat resultedin
full mappingof entriesin the lexical databas¢o
WordNetsensesMuch, but not all, of this map-
ping wasaccomplishednanually

Each entry whose WordNet senseswere as-
signedmanuallywas consideredy at leasttwo
coderspnecoderwhowasinvolvedin the entire
manualassignmenprocessandthe otherdrawn
from a handfulof codersworking independently
on differentsubsetsof the verb lexicon. In the
manualtagging,if a WordNetsensewasconsid-
eredappropriatdor alexical entryby anyoneof
thecodersjt wasassignedOverall,13452Word-
Netsensassignmentaeremade.Of these51%
wereagreeduponby multiple coders.Thekappa
coeficient (K) of intercoderagreementwas .47
for afirst roundof manualttaggingand(only) .24
for a secondoundof moreproblematiccases.

While the full taggingof the lexical database
may makethe automatictaggingtaskappearsu-
perfluous, the low rate of agreementbetween
codersand the automaticnatureof someof the
tagging suggestthere is still room for adjust-
mentof WordNet senseassignmentin the verb
database.On the one hand, eventhe higher of
thekappacoeficientsmentionedaboveis signifi-
cantlylowerthanthestandarguggestetbr good
reliability (K > .8) or eventhelevel whereten-

5The kappastatisticmeasureshe degreeto which pair
wise agreemenbf coderson a classificatiortask surpasses
whatwould be expectedby chancethe standardiefinition
of thiscoeficientis: K = (P(A) — P(E))/(1 — P(E)),
whereP(A) istheactualpercentagef agreemerandP( £)
is the expectedpercentagef agreementaveragedver all
pairsof assignmentsSeverahdjustmenti thecomputation
of thekappacoeficientweremadenecessarpy thepossible
assignmemf multiplesenseor eachverbin aLevin+class,
sincewithout prior knowledgeof how manysensesreto be
assignedthereis nobasison whichto computeP ( £).



tative conclusionamay bedrawn (.67 < K <
.8) (Carletta, 1996), (Krippendorf, 1980). On
theotherhand,if theautomatiassignmentagree
with humarncodingatlevelscomparabléo thede-
greeof agreemenamonghumansijt maybeused
to identify currentassignmentshat needreview
andto suggeshewassignmentir consideration.
In addition, thereare consistencychecksthat
can be mademore easily by the automaticpro-
cessthanby hand. For example the same-synset
assumptioris much more easily enforcedauto-
matically thanmanually Whenthis assumption
isimplementedor the 2756sense thetraining
set,anothel967 senseassignmentaregenerated,
only 131 of which wereactuallyassignednanu-
ally. Similarly, whensucha premiseis enforced
on the entirety of the lexical databasef 13452
assignmentsgnother5059senseassignmentare
generatedlIf the same-synseissumptions valid
andif the sensesssignedn the databasareac-
curate thenthe humantagginghasa recall of no
morethan73%.
Becausawordsenseavasassigneevenif only
one coderjudgedit to apply, humancoding has
beentreatedashavingaprecisionof 100%. How-
ever someof thesolojudgmentsarelikely to have
beenin error  To determinewhat proportionof
suchjudgmentswerein reality precisionfailures,
arandomsampleof 50 WordNetsensesupported
by only oneof thetwo original codersvasinves-
tigatedfurther by a teamof threejudges. In this
round,judgesratedthe WordNetsensesssigned
totheverbentriesasfalling into oneof threecate-
gories:definitelycorrect,definitelyincorrect,and
armguablewhethercorrect. As it turnedout, if any
oneof thejudgesrateda sensedefinitely correct,
anotherjudge independentlyjudgedit definitely
correct;this accountdor 31 instances.In 13 in-
stancesheassignmentaerejudgeddefinitelyin-
correctby atleasttwo of thejudges.No consen-
suswasreacheantheremaining6instancesEx-
trapolatingrom this sampleto thefull setof judg-
mentsin thedatabassupportedy only onecoder
leadgo anestimatehatapproximatel\l 725(26%
of 6636solojudgmentspf thosesensesireincor-
rect. Thissuggestshattheprecisiorof thehuman
codingis approximately87%.
Theupperboundfor thistask,assetby human
performancejs thus 73% recall and 87% preci-

sion. The lower bound,basedon assigningthe
WordNetsenseawith thegreatesprior probability,
is 38%recalland62%precision.

5 Mapping Strategies

Recentwork (Van Halterenet al., 1998) has
demonstratednprovementn part-of-speeckag-
ging when the outputs of multiple taggersare
combined. When the errorsof multiple classi-
fiers arenot significantlycorrelatedthe resultof
combiningvotesfrom a setof individual classi-
fiers often outperformsthe bestresultfrom any
singleclassifier Usingavotingstrategyseemss-
peciallyappropriatehere: The measuresutlined
in Section3 averagenly 41%recallonthetrain-
ing set,but the sensepickedout by their highest
valuesvary significantly

The investigationsundertakerusedboth sim-
ple and aggregatevoters, combinedusing var-
ious voting strategies. The simple voterswere
the 7 measurepreviouslyintroduced’ In addi-
tion, threeaggregatevoterswere generated:(1)
the productof the simplemeasuregsmoothedso
that zero valueswouldn't offset all other mea-
sures);(2) the weightedsum of the simplemea-
sureswith weightsrepresentinghepercentagef
thetrainingsetassignmentsorrectlyidentifiedby
the highestscoreof the simple probabilities;and
(3) the maximumscoreof the simplemeasures.

Using thesedata, two differenttypesof vot-
ing schemesvereinvestigated.The schemeglif-
fer most significantly on the circumstancesin-
der which a voter castsits vote for a WordNet
sensethe sizeof thevote castby eachvoter, and
the circumstancesinderwhich a WordNetsense
wasselected We will referto thesetwo schemes
asMajority Voting Schemend ThresholdVoting
Scheme

5.1 Majority Voting Scheme

Althoughwe do not know in advancehow many
WordNetsenseshouldbeassignedo anentryin

the lexical databaseywe assumehat,in general,
thereis atleastone.In line with thisintuition, one
strategywe investigatedvasto havebothsimple
andaggregateneasuresastavotefor whichever

"Only 6 measureéncludingthesemantisimilarity mea-
sure)weresetout in theearliersectionthemeasuresotal 7
becauséndv frameprobabilityis usedn two differentways.



sense(sdf averbin asemantialassreceivedhe
highest(non-zero)value for that measure. Ten
variationsaregivenhere:

¢ PriorProb: Prior Probability of WordNet
senses

¢ SemSim: SemanticSimilarity
¢ SimpleProd: Producbf all simplemeasures

¢ SimpleWtdSum: Weightedsumof all sim-
ple measures

¢ MajSimpleSgl: Majority voteof all (7) sim-
ple voters

¢ MajSimplePair: Majority vote of all (21)
pairsof simplevoter$

¢ MajAggr: Majority voteof SimpleProdand
SimpleWtdSum

¢ Maj3Best: Majority vote of SemSim,Sim-
pleProd.andSimpleWtdSum

e MajSgl+Aggr: Majority vote of MajSim-
pleSglandMajAggr

¢ MajPair+Aggr: Majority vote of MajSim-
plePairandMajAggr

Table2 givesrecallandprecisionmeasure$or
all variationsof this voting schemebothwith and
without enforcemenbf the same-synseassump-
tion. If we usetheproductof recallandprecision
asacriterionfor comparingresults,the bestvot-
ing schemas MajAggr, with 58%recalland72%
precisionwithoutenforcemenof thesame-synset
assumptionNotethatif thesame-synsetssump-
tionis correctthedropin precisionthataccompa-
niesits enforcemenmmostly reflectsinconsisten-
ciesin humanjudgmentsin the training set; the
true precisionvaluefor MajAggr after enforcing
the same-synsedssumptioris probablycloseto
67%.

Of the simplevoters,only PriorProband Sem-
Simareindividually strongenougho warrantdis-
cussion. Although PriorProbwas usedto estab-
lish our lower bound, SemSimprovesto be the

8A paircastavotefor asenséf, amongall thesensesfa
verb,aspecificsensénadthehighestwaluefor bothmeasures.

Variation W/O SS W/ SS

R P R P
PriorProb 38% | 62% | 45% | 46%
SemSim 56% | 71% | 60% | 55%
SimpleProd | 51% | 74% | 57% | 55%
SimpleWtdSum| 53% | 77% | 58% | 56%
MajSimpleSgl | 23% | 71% | 30% | 48%
MajSimplePair | 38% | 60% | 45% | 43%
MajAggr 58% | 72% | 63% | 53%
Maj3Best 52% | 78% | 57% | 57%
MajSgl+Aggr | 44% | 74% | 50% | 54%
MajPair+Aggr | 49% | 77% | 55% | 57%

Table2: Recall(R) andPrecision(P) for Major-
ity Voting SchemeWith andWithout the Same-
Synsetassumption

strongervoter, bestedonly by MajAggr (the ma-
jority voteof SimpleProcandSimpleWtdSumjn
voting thatenforceghe same-synsedssumption.
BothPriorProbandSemSinprovidebetteresults
thanthemajority vote of all 7 simplevoters(Ma-
jSimpleSgl)andthe majority vote of all 21 pairs
of simplevoters(MajSimplePair).Moreover the
inclusionof MajSimpleSglandMajSimplePaiin
a majority vote with MajAggr (in MajSgl+Agr
and MapPair+Aggr respectively)turn in poorer
resultsthanMajAggr alone.

The poor performanceof MajSimpleSgland
MajSimplePairdo not point, however to a gen-
eral failure of the principle that multiple voters
arebetterthanindividual voters.SimpleProdthe
productof all simplemeasuresand SimpleWtd-
Sum, the weightedsum of all simple measures,
providereasonablystrongresults,anda majority
vote of thebothof them(MajAggr) givesthebest
resultsof all. Whentheyarejoinedby SemSinin
Maj3Best theycontinueto providegoodresults.

Thebottomline is thatSemSimmakeghemost
significantcontributionof anysinglesimplevoter,
while theproductandweightedsumsof all simple
voters,in concerwith eachother providethebest
resultsof all.

5.2 ThresholdVoting Scheme

The secondvoting strategyfirst identified, for
eachsimpleandaggregateneasurethethreshold
valueatwhichthe productof recallandprecision



Variation R P
AutoMap+ | 61% | 54%
AutoMap- | 61% | 54%
Triples 63% | 52%
Combo 53% | 44%
Combo&Auto | 59% | 45%

Table3: Recall(R) andPrecision(P) for Thresh-
old Voting Scheme

scoredn thetraining sethasthe highestvalueif
that thresholdis usedto selectWordNetsenses.
Duringthevoting,if aWordNetsensénasahigher
scorefor ameasurehanits thresholdthemeasure
votesfor the senseptherwise,jt votesagainstit.
Theweightof themeasures voteis theprecision-
recallproductat the threshold. This voting strat-
egy hastheadvantagef takinginto accounteach
individual attributes strengthof prediction.

Five variations on this basic voting scheme
wereinvestigated.In each,sensewereselected
if their vote total exceededa variation-specific
threshold. Table 3 summarizegecall and pre-
cision for thesevariationsat their optimal vote
thresholds.

In the AutoMap+ variation, Grid andLevin+
probabilitiesabstainfrom voting whentheir val-
ues are zero (a common occurrence,because
of datasparsityin the training set); the same-
synsetassumptioris automaticallyimplemented.
AutoMap- differsin thatit disregardshe Grid
andLevin+ probabilitiescompletely The Triples
variation placesthe simple and compositemea-
suresinto threegroups,the threewith the high-
est weights, the three with the lowest weights,
and the middle or remainingthree. Voting first
occurswithin the group,andthe group's vote is
broughtforward with a weightequalingthe sum
of the group members'weights. This variation
also addsto the vote total if the sensewas as-
signedin thetrainingdata. The Combo variation
is like Triples, but ratherthanusingthe weights
andthresholdsalculatedor the singlemeasures
from the training data, this variation calculates
weightsandthresholdgor combinationsof two,
three four, five, six,and,severmeasureskinally,
theCombo&Auto variationaddsthesame-synset
assumptiorto the previousvariation.

Although not evidentin Table 3 becauseof
rounding AutoMap-hasslightly highervaluesfor
both recall and precisionthan doesAutoMap+,
givingit thehighestecall-precisiomproductof the
thresholdvoting schemesThis suggestshatthe
Grid andLevin+ probabilitiescould profitably be
droppedrom furtheruse.

Of the more exotic voting variations, Triples
voting achievedesultsnearlyasgoodasthe Au-
toMap voting schemesput the Comboschemes
fell short,indicatingthatweightsandthresholds
arebetterbasedon singlemeasureshancombi-
nationsof measures.

6 Conclusionsand Futur e Work

Thevoting schemestill leaveroomfor improve-
ment,asthebestresults(58%recalland72%pre-
cision,or, optimistically, 63%recalland67%pre-
cision) fall shy of the upperboundof 73% re-
call and 87% precisionfor humancoding? At
thesametime, theseresultsarefar betterthanthe
lower boundof 38%recalland62% precisionfor
themostfrequentWordNetsense.

As hasbeentruein manyotherevaluatiorstud-
ies, the bestresultscomefrom combiningclassi-
fiers (MajAggr): not only doesthis variationuse
a majority voting schemeput moreimportantly
the two voterstake into accountall of the sim-
ple voters,in differentways. The next-bestre-
sultscomefrom Maj3Best,in whichthethreebest
singlemeasuresote. We shouldnote, however
thatthesinglebestmeasurethesemanticsimilar-
ity measurdrom SemsSimJagsonly slightly be-
hind thetwo bestvoting schemes.

This researcldemonstratethat credibleword
sensedisambiguationresults can be achieved
without recourseto contextualdata. Lexical re-
sourcesenrichedwith, for example syntacticin-
formation,in which someportion of theresource
is hand-mappedo anotherlexical resourcamay
berich enoughto supportsuchatask. Thedegree
of successchievedherealsoowesmuchto the
confluencef WordNetshierachicaktructureand
SEMCOR tagging,asusedin the computationof
thesemanticsimilarity measurepn theonehand,

9The criteria for the majority voting schemespreclude
theirassigningnorethan2 senseso anysingledatabasen-
try. Controlledrelaxatiorof thesecriteriamayachievesome-
whatbetterresults.



and the classifiedstructureof the verb lexicon,
which providedthe underlyinggroupingsusedin
thatmeasurepn the otherhand. Evenwhereone
measuregyields goodresults,severaldatasources
neededo be combinedo enabldts success.
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